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Abstract

Hydrostatic adjustment due to diabatic heating in two nonisothermal atmospheres is examined. In the
fiest. case the temperature stratification is continnous: i the second case the atmosphere is composed of
a warm. 1sothermal troposphere and a colder. isothermal. semi-infinitely deep stratosphere. In both cases
hydrostatic adjustment. to a good approximation, follows the pattern found in the Lamb problem (semi-
mfinitely deep. isothermal atmosphere): Initially we have acoustic waves with the kinetic energy Hicreasing
or decreasing at the expense of available elastic energy. After this initial period the acoustic waves evolve
into acoustic-gravity waves with the kinetic, available potential and available elastic energies interacting with
each other. Relaxation to hydrostatic balance occurs within a few oscillations.

Stratification in an atmosphere with a continuous temperature profile affects primarily the shape and
amplitude of the disturbances. In the two-layer atmosphere. a certain amount of energy 1s trapped in the
tropospheric waveguide as disturbances reflect off the tropopause and back into the troposphere. With each

internal reflection a portion of this trapped energy escapes and radiates to infinity.



1. Introduction.

The atmosphere continuously undergoes various forms of adjustment. On the targe seales barochinie
waves are excitedt and reduce the north-south temperature gradient so efficiently that the extratropical
atmosphere remains near neutral stubility}Stono L978). Inertial-gravity waves radiate ageostrophic distur-
bances out to infinity. leaving behind a geostrophic final state (Rosshy 1938). On the mesoscale hydrostatic
imbalances are eliminated by the excitation of ACOUSEIC-gravily waves.

Although baroclinic and geostrophic adjustinent have received considerable attention. it is only recently
that hydrostatic adjustment has been studied. Bannon (1995) examined how hydrostatic imbalances excite
acoustic-gravity waves in an isothermal atmosphere, the so-called Lamb problem. An important aspect of
his analysis was a computation of the energetics. Bannon showed that nonhydrostatic disturbances may
generate three types of energy: kinetic, available potential and available elastic energtes. Although he found
the initial and final distribution of these three energies during hydrostatic adjustment. he did not follow their
temporal evaluation. We will do this in Section 2.

Although Lamb’s problem provides many useful insights into hydrostatic adjustment, the atinosphere
is not isothermal. Vertical stratification plays an important role in determining the vertical propagation of
acoustic-gravity waves from their origin in the troposphere into the upper atmosphere (Francis 1973, Fried-
man 1962). Consequently, vertical stratification must also play an important role in hydrostatic adjustment.
The purpose of this paper is to examine those effects.

To realize our goal, [ have examined two stratifications which highlight different effects. In Section 3.
we examine hydrostatic adjustment when the temperature profile is given by Ty(z) = T. (1 + 3¢ ~7/P) . This
basic state yields a nearly constant lapse rate in the troposphere and an essentially isothermal stratosphere: a
similar model was examined by Pekeris (19:48). With this thermal stratification. acoustic-gravity waves travel
at different phase speeds within the atmosphere. just as electric waves do within a nonuniform transmission
line.

To examine the case when a sharp troposphere is present. we introduce in Section 4 a two-laver at-
mosphere where one layer represents the troposphere and the other models the stratosphere. Both lavers

are 1sothermal but at different temperatures. In this case acoustic-gravity waves will reflect at the interface



{tropopause) and energy leaks from the troposphere into the stratosphere. Finally. in Section 5 we present

our conclusions.

2. The Lamb Problem

As a benchmark for later computations we first examine the energetics during hydrostatic adjustment
i an isothermal atmosphere. The hydrostatic adjustment arises due to diabatic heating of Anite vertical
extent.

We begin by modeling the atmosphere as a stably stratified. inviscid, diatomic, ideal gas in a Carte-
sian coordinate system where —gk equals the acceleration due to gravity. The one-dimensional linearized

equations for small-amphitude perturbations about the basic state

pO(:):P-E—:/HS. polz) :p_rj_:/HS_
(2.1)
Ty{z) =T.. 0o(3) = T.er</Hs
are
Jw dp
e T & 2
oo PR (2.2)
dp  dpy ‘ dw _
Pnat +F:—U +P()fd—:-—0- (2.3)
ap » 0w .
a—i+poc“a—~—pogu':Ap{H(:—a)—H(:—ZaHO(i}. ’ (2.4)
and
()9 d90 L goAp . . . . o =
5+ = R (s - a) = H(z = 2000000 (2.5)

where the basic state quantities have a subscript nought and the asterizk subscript denotes a constant
reference value. Here w denotes the velocity in the vertical z direction at time . p denotes pressure, [
denotes the temperature. 8 denotes the potential temperature. p denotes the density. H ;. the scale height.
equals RT./g. R denotes the ideal gas constant. v = ', /C, = 7/5 is the ratio of the specific heats at constant
pressure and volume, ¢? = vRT. and x = (5 — 1)/~. The functions H{ ) and §{ ) denote the Heaviside step

and delta functions. respectively. In addition to the governing equations. we have the boundary conditions

that
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and the inttial conditions that
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Equations (2.2)-(2.5) may be combined together to vield
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Equation {2.8) describes the energetics of the model; the first term on the left side of (2.8} gives the kinetic
energy per unit volume while the second and third terms give the available elastic and available potential

energies. respectively. See Bannon (1995).
To solve (2.2)-(2.5), we combine these equations together to obtain a single equation in w:
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In appendix A. I solve (2.10) by Fourier sine and Laplace transforms. Once w(z.t) is known, the other

solutions follow from (2.3)-(2.5). These solutions are

(=t - . .
“(A ) - Led/Hs 10|z = 2al.t) — Wz + 2a.t)] — $e*/* s [W(]: —al.t) = W(z +a.t)], (2.11)
w - -

PED) (s Za) = H(= = 20)

Ap
+ %ea/H_:e—:/'_’Hs [p(': —2al,t) — P(z + 2a,t)]
— %e“/")H"e“:/?H»‘ [P(lz —al.t) = P(z +a.t)]
~—" (I/H5 —:/QH‘:
_G Z)G;HSE O]z = 2a],t) — O(= + 2a.t}]
~ =7 »u/?H_: -:/2H=
+ i Jac ‘ O]z —al.t) = O(z + a.t)] (2.11)
l‘}H;‘
and
(.t s
WD) s/t (hr i~ a) — H (= — 20))/

Lt Hae J1428)2/2H <
_ Kae .)‘;H_ O]z — 2al.t) — Oz + 2u. )]

a/'_’H;:fw V2w /20f

2~ H s

nue

Oz —al.t) =Bz + a. t)]. (2.12)



where
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AT =ToAp/p.. dw = Ap/p.c.sgn( ) is the sign function and Jo( ) and J,( ) denote Bessel functions of the
first kind and zeroth and first order, respectively. The integrals in (2.14)-(2.15) were evaluated using Cote’s
sixth order scheme (see Froberg 1968, p. 201).

For a fixed value of ¢/Hs. p(z,t), w(z, ¢), and 8(z.t) may be computed. Initially waves are excited. As

these disturbances propagate out to infinity, the atmosphere approaches the steady-state given by

wy{z) =0, (2.16)
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Although we could present the temporal evolution of these fields. we have chosen to proceed along a different

path. From (2.8). we have that
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Consequently. [ have graphed in Fig. 1 the temporal evolution of the kinetic (KE). available elstic (AE).
and available potential (PE) energies over the entire cohumu. o highlight the transient disturbances. the
steady-state values AFE and PE have been subtracted off and the plotted energies have been normalized with
respect to the total energy.

As Fig. 1 shows, the kinetic energy iniLially increases (decreases) at the expense (gain) of elastic energy.
During this period of time. which depends on a/lls. we have acoustic waves. After this initial period these
acoustic waves evolve into acoustic-gravity waves and hydrostatic adjustment begins to occur. The ebb and
flow of energy between AE. KE and PE dampens out with the oscillations having a decreasing period that
depends upon a/Hs. Within a few oscillations hydrostatic adjustment has occurred.

We also note that the amount of transient available potential energy is small compared to the transient
kinetic and available elastic energies. This is clearly seen in a plot of the integrand of (2.19) presented 1n
Fig. 2. For the available potential energy. essentially all of the energy is given by the steady state (the spike
on the left side). In contrast. the kinetic and available elastic energles are dominated by transients that
propagate out to infinity.

Having presented the temporal evolution of kinetic. available elastic, and available potential energies
during the hydrostatic adjustment problem for the classic Lamb problem. we examine the same problem in

the next section where the temperature decreases with height as T. (1 + Je=/PY.
3. The Exponential Temperature Profile

Having found the waves excited in an uniform (isothermal) atmosphere by a region of [diabatic heating.

we now examine a continuously varying temperature field. namely
Tolz) = T- (1 + .36«—:“3) , (3.1)

This particular temperature profile produces a constant lapse rate in the lower troposphere {& & D) and
an isothermal atmosphere in the upper stratosphere (z > D). Furtherninore. the speed of sound decreases
monotonically from its maximum at the ground to its minitmm value ¢ = < RT. in the upper stratosphere.

For the observed atmosphere. 3 = 0.3 and 7. = 220K, With these particular values for 3 and T. and



a/D =15 (3.1) vields asurface temperatire of 236 K and temperatiures of 239 K and 2183 K ar the hetghts
of 5 ki and 10 ki, respectively.
Our analysis again starts with (2.2)-(2.5). Aguin these equations may be combined together to give

(2.10) with the exception that now the basic state varies according to (3.1).
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The nondimensional. Laplace-transformed vertical velocity equation becomes
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In Appendix B I solve (3.5). In terms of the nondimensional =, 117(z.s) is
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if 2 < . The parameters a’, ¥’ and ¢’ are defined by (B.4)-(B.5). In the limit of 3 — 0 (an isothermal

atmosphere), the hypergeometric functions tend to one and we recover Lamb’s solution (A.5). During the
numerical inversion of (3.6)-(3.8) a numerical algorithm developed by Mayrhofer and Fischer (1994) was
employed to compute Gauss™ hypergeometric series for moderate values of fs|. For large |s|. the asymptotic
expansion (Luke 1969, Section 7.2) for the series was used.

To obtain p(z,t) and f(z,t). we take the Laplace transform of (2.4) and (2.5). The nondimensional,
Laplace-transformed form of these equations are
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All of the transforins were inverted numerically using Talbot's method {Murli and Rizzardi. 1990). except
for those terms when the inverse could be obtained by inspection.

To illustrate our solution I first found the T, for a given 3 which gave a surface temperature near 2%
K. Because T, decreases with 3. so does Hg and a/Hs increases. These values are summarized in Table 1.
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For a given 3 and «/H s [ then computed the energetics for large £ Ouly the available potential and
elastic energies are nonzero and they are given in Table 1. The case of J = U provided a check on the
code. As this table shows. as 4 increases the available potential energy decreases while the available elastic
increases. Taken together. their sum decreases with a corresponding increase in the amount of transients.
This is shown in Fig. 3. Although there ar.e very slight changes in the locations of the maxima and minima.
the evolution of the various energies follows the life cyele found in the Lamb problem.

To understand these slight changes [ have plotted the vertical velocity at various tinies in Fig. 4. Asone
mught expect, differences in the local speed of sound has affected the propagation of the various wave fronts.
resulting in slight changes in the exact placement of the maxima and minima in the energetics diagram. On
the other hand. we can identity the same progression of wave pulses regardless of the value of 3.

Having found the effect that continuous stratification has on hydrostatic adjustment. let us look at the

limiting case when the stratification is concentrated in a discontinuity.

4. Two-Level Model

As counterpoint to the results presented in the previous section where the basic state’s temperature
decreased exponentially from T.(1 + 3) to 7.. we now examine hydrostatic adjustment in a two-level atmo-
sphere consisting of an isothermal troposphere at temperature 7, (or scale height H) and depth K which
lies underneath an infinitely deep, isothermal stratosphere at temperature 7. (or scale height Hs). Because

each layer is isothermal, (2.2)~(2.5) still holds in each layer. However, the basic state is now given by
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Using the same nondimensionalization as in Section 2. [ show in Appendix € that the Laplace transform

of the nondimensional velocity is
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and
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The variable g; is given in (C.7) with the restriction that Re(us) > 0. We may compute O(z.s) and P(z.s)
from (3.9)-(3.10).

Equation (4.3)-(4.7) provide a clear physical picture of the wave field. The first term in (4.5) represents
the direct wave excited at = = z,. Waves radiate both upward and downward. The downward propagating
waves eventually reflect at the earth’s surface and then propagate upward. This process is given by the
second term in (4.3).

When a direct or reflected wave reaches the tropopause, a portion is reflected back into the troposphere
[the term given by de=2#1H/3 ij (15)] and some of the energy escapes into the stratosphere [the term given
by Ade=2wifl/a i (4.6)]. The waves that are reflected by the tropopause propagate down to the earth’s
surface where they are reflected. These reflected waves again propagate to the tropopause where some of the
energy is reflected and some escapes. Thus the terms given by A%e=2mil/a gy {(:£.9) represents the internal
reflections within the tropospheric waveguide while the corresponding terms in (4.6) represent the continual
bleeding of energy out of the troposphere. Eventually all of the transients escape, leaving the hyvdrostatically
adjusted basic state. Because these modes represent the leakage of wave energy away f{rom the troposphere.

we shall refer to them as “leaky modes™.



Toillustrate our results [ have computed solutions when the tropospheric temperature is 290 K and the
stratospherie temperature is 150 and 220 K. Although 220 K is a realistic temperature for the stratosphere,
150 K is tno cold. My reason for including this case is to see what happens when the temperature contrast
across the tropopause is very strong. .\s in the previous sections. Talbot's method was used to numerically
invert the Laplace transform term by term..

Figure 3 shows the temporal evolution of the kinetic (KE). available potential (PE) and available elastic
(AE) energies for the stratospheric temperatures of 290, 220 and 150 K. The tropospheric temperature
1s maintained at 290 K. As this figures shows. until the wave front reaches the tropopause. the temporal
evolution is the same, regardless of stratospheric temperature. The differences in the curves of AE and PE
are due to different values of steady-state AE and PE. Table 2 gives these steady-state values and shows
that they increase with a decrease in stratospheric temperature.

The general evolution of the KE, PE and AE is very similar to the Lamb problem. However. as
the stratospheric temperature decreases, several additional and shorter period oscillations develop: this is
especially evident in the plot of kinetic energy. These additional undulations are due to the reflections within
the tropospheric waveguide and the subsequent release of energy into the stratosphere on a later reflection.

To examine how the presence of a strong tropopause affects the actual wave solutions I have graphed
the nondimensional vertical velocities at various nondimensional times ¢;t/a. where ¢; is the speed of sound
in the tropospheric layer. Figure 6 shows these results when the stratospheric temperature is 290 and 150 K.
The effect of the colder stratosphere is two-fold: First, wave solutions that propagate into the stratosphere
travel at a slower speed. This is quite reasonable because the temperature and speed of the sound are lower
there. Second we see multiple reflections in the amplitude of the vertical velocity from reflections off the

tropopause.
5. Conclusions

The effects of stratification on hydrostatic adjustment arising from tropospheric diabatic heating have

been examined. These are the key finding:

e To a good approximation, hydrostatic adjustment in a stratified atmosphere is simmilar to that in an

10



isothermal atmosphere: Initially acoustic waves are generated with the kinetic energy growing or decaying
at the expense the available elastic energy. Within two oscillations the acoustic waves evolve into acoustic-
gravity waves. Hydrostatic adjustment occurs during the next 3 to :t oscillations.

¢ In an atmosphere with continuous stratification. the primary effect of the stratification is on the shape and
amplitude of the disturbances as difference:s in the local speed of sound accelerate and retard propagation.

e [ an atmosphere with a sharp tropopause, small. but distinet. reflections may be observed. These internally

reflecting waves trap a small amount of the energy within the tropospheric waveguide. Eventually all of the

transients are able to escape and radiate out to infinity.
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Appendix A

We begin our solution of (2.10) by first introducing the nondimensional variables = = z/a. ' = ct/a
and ' = w/Aw. Dropping the primes, we have that
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Taking the Laplace transform of {A.1), we find that
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where W (z,s) = e /?HsWW(z 5). To solve (A.2), we use Fourier sine transforms. WWe have chosen this

particular transform because it ensures that w(0,¢) = 0 for all . Upon applying this transform, we obtain
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where we have evaluated (A.4) using integral tables (Gradshteyn and Ryzhik 1963. formula 3.742.1). Because
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we obtain (2.11) from (A.3).
To compute p{:.¢) and #(=.t), we take the Laplace transform of (2.4) and (2.5) and find that
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and
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To find p(z.¢) and 9(=.¢), we must invert two transforms:
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so that

SN e ¢ T2~ b2
c—*(e——) = H(t—b) [1 —~ ab/ ﬂ—,—-—)dr} : (A.12)
b

S

In a similar manner,

o —bVaita? t

Appendix B

We begin our solution by introducing §4'(z.s) = ¢ /H=WW(: s). Eq. (3.3) then becomes

W2 W 2y Hy Y
(1+je““/D) (d ) + av dW) Lo W') « (( y N KH') TNy

d=* " Hs d= ' HZ ©Hs \d: " Hg
= L He 5 - ) —6(s = 2)). (B.1)
po(=)
We now introduce the new independent variable u = —3¢=%/2  Equation (B.1) becomes

2]

D'_’P “uD/H_;—I

{1 —u)u o] (DT

lu—uy) —d(u—u)]. (B.2)

y o C o W
e +[=(l—a —b)u]mt——u W =
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where

1
Vv = -; - (BS)
a =b = _D (B.4)
20 g
C =4 — (B.5)

and u; denote the value of u corresponding to z;.

Our particular choice of v was motivated by two factors. First. this choice vields the classic Gauss
hypergeometric equation. Second. we anticipate that the solution for the exponential temperature profile
should be very similar to Lamb’s solution. After all, the temperature profile differs markedly only near the
ground. If we choose the v given by (B.3), then e /s becomes the Lamb solution and W(z.s) is merely
the correction arising from the ¢=?7/2 term in the temperature profile.

Consider the differential equation

d- { 90,0 ~
(1—u) du!é [C'—(l—a'—b')u%—a"b"g:—é(u—(). (B.6)

With the requirement that g(—3|¢) =

(ulc) = {C’l[F(a’.b’;c': WGla' . =3) = F(a' V., " =G, b u)], -3<u<c. (B.7)

CaF(a’' b ¢ u). ¢ <u<o.

where F(a’ b":c';u) and G{a’. ¥ ¢’; u) are hypergeometric functions of the first and second kind. respectively.

See Lebedev (1972, Chapter 9). The arbitrary constants ('} and (5 are found by requiring that

+

oy
hm g(u|¢) = lin)+ g{u|¢) and (1— u)u—l”i = ~1. (B.8)

u—g- u—{ au
.+I

The second condition in (B.3) follows from integrating (B.6) over the infinitesimally thin interval [(7.¢

where (~ and ¢t denote points just below and above the point u = (. These relationships yield

. I'(a )F(b/)F a’ b ()
C) = ) B9
T (T O (@ b =) (B:9)
and
= C{) DY) Fla" b OGa b e =3) — (’ :—3)(;((1./):(":0]. (B.10)

L)t = (1= Q)= Fa b e’ = 3)

It



where [{ ) is the gama function (Lebedev, 1972, Chapter 1), In deriving (B.9) (B.10) we have used the
properties of the Wronskian as they apply 1o hypergeometric functions (Lebedev, 19720 p. 278, problem 9).

Substituting of €'} and (2 into (B.7) yields

(ulg) (=)' F b ) Fl+d = L+ = 2= =3 F(a b Q)
IERAT =
gl (@ - (L= Q) =P F(d, be =)

g

W E(@ Y =N EF L+ a = L+ =2 =) Fla’ b))

_ | : . (B.11
(¢ = D= (L= v =V Fld b = 3) )
if -3 <u<( and
(ulC) (=N F(a' b OVF(1+a —¢ 1+ b —c' . 2~c=3)Fla' . b:cu)
11 =
gl (@ )= (1 = Q) =P Fla’. b ¢ —3)
3 Cl_C’F(a’.b"c': —NF(l+a = L+~ 22— F(d b u)' (B.11)

(¢ = )= (1 = Q)= =" Fla’. b /s =3)

if ¢ < u < 0. To derive (B.11)-(B.12) we used the relationships that [(¢/)/T'(¢/ — 1) = ¢/ — 1 and the
relationship between G{a’. b, ¢’;z) and F(a’,¥.¢'; z) (Lebedev, 1972, p. 277, problem 7). The final solution
is obtained by substituting for a’, ¥ and ¢, applying the results to each of the impulsive forcings in (B.2)
and multiplying by the appropriate coefficients.

QOur ability to express G{a’.b':¢’:z) in termus of F{a’.b':c;z) and F(l+a = 1+4 —ci2-c"2)
requires that the contour of integration not pass near the singularities ¢/ = 0. £1.£2,.... When the contour
generated by the numerical inversion did, we took an equivalent contour [increased A as suggested by Murli

and Rizzardi (1990)] to avoid coding this special case.

Appendix C

We begin our analysis by taking the Laplace transform of (2.10). Because of the linearity of the problem,

we only have to solve an equation of the form

Hs; 07wy a duy 0wy Hsp. . R
- - —_—— = - - d0(z — z,)0{t) 0<:z< H C1
0, o T H, 9: 0= Him(o 5 — o0l for 0s s fa (€.1)
and
O a dua  Fus
- —= — - = Ja < z. 2
o= + Hs 0= d:° for Hia< (C.2)
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To find the solution tor (2.10) we then subtract the solution for =y =2 frot the one for =, = 1. Agan |
have sealed the vertical distance with a and time with a/c.. Denoting the transform of the nondimensional
vertical velocity by 315 (z. s). we have that

d*W, He , a* sl fn Hsp.
—_—— = sTh o W m e 2 (s — g C3
d:2 (Hl’ +<LH;’> PE Hipo(zy) ( ! (3

for the troposphere and

d® W a a” W 0 (C 45
— < —_— 5 = =3
) :

dz=?
for the stratosphere, where 1V{z. s) = e /PHOW (2 5) and Wa(z.s) = e® /20y (1) 5).

Taking w(0.¢) = 0 and the radiation boundary condition mto account. the solutions to (C.3)-(C.4) are

oy Asinh(g =), 0<=<z, r
Wils.s) = {Bsinll(,ul:)+C'Co.~;h(;“:). << H/a (€5)
and
Wo(z.s) = Dexpl—ps(: — H/a)]. (C.6)
where
I Hs o (12 5 5 a"’
2 _ 1S o R ok
“i i, s + 4H13 and py = 8" + g ( }

Here we have chosen the branch Re{p2) > 0. The remaining task is to find 4, B, C"and D. The kinematic
boundary condition leads to Wi {f,s) = WQ(H. s), where W’_}(J. s) = eH/2Hs=HIZHO, (- 5). A combination
of the dynamic and kinematic boundary conditions applied to the Laplace transformed (2.4) yields the second

condition that

dW\(H.5)  dWs(H.s) a a Ho\ ~
= - 1 - == ) Wa(H.s). Cs8
d= dz + 2Hs  ~Hs i, 2(H.s) (C.8)

At the point of singularity. continuity of the solution requires that Wi(z7.s) = Wi(zF.s). where =7

and z7 denote points just below and above : = 2. respectively. Finally. an integration of (C.3) over the

interval {27 . z]] yields the final condition that

= 5
dW, :e—a:,/'.’Hl__Hip_'_, (C-9)
d- .- f[lﬂv)(zx)

Substituting (C.3)-(C.6) into these four conditions gives the solutions listed in Section 4. except in terms
of hyperbolic cosines and sines. Finally we express the hyperbolic functions in terms of exponentials and
ST

expand the denominator as a geometric series in e~
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Table 1 Distribution of available potential (PE) and available elastic (AE) energies in the final equilibrium

state in an nonisothermal atmosphere where the temperature behaves according to (3.1) with D/ Hy = 1.5

Tables

The percentages give the ratio of the corresponding energy to the total energy.

3 T. T4(0) a/Hs PE AE
0.0 290 K 290 K 0.500 64.74% 6.71%
0.1 260 K 288 K 0.538 60.58% 3.32%
0.2 240 K 236 K 0.604 56.92% 9.79%
0.3 220 K 286 K 0.639 53.57% 11.39%

Table 2: Same as Table 1 except for a two-level atmosphere with a/Hs = 0.5.
Tropospheric Stratospheric AE
Temperature Temperature
290 K 290 K 64.714% 6.71%
290 K 220 K 3% 7.35%
290 K 150 K 66.69% 8.39%




Table I: Distribution of available potential (PE) and available elastic (AE) energies in the final equilibrinm

state in an nonisothermal atmosphere where the teruperature behaves according to (3.1) with D/Hgs = 1.5.

Tables

The percentages give the ratio of the corresponding energy to the total energy.

3 T. T5(0) alHg PE AE
0.0 290 K 290 K 0.500 651.71% 6.71%
0.1 260 K 288 K 0.558 60.58% 3.32%
0.2 240 K 286 K 0.604 56.92% 9.79%
0.3 220 K 286 K 0.659 53.57% 11.39%

Table 2: Same as Table 1 except for a two-level atmosphere with a/Hs = 0.5
Tropospheric Stratospheric PE AE
Temperature Temperature
290 K 290 K 64.74% 6.71%
290 K 220 K 65.35% 7.35%
290 K 150 K 66.69% 3.39%

In



Figures

Figure 1: The transient portion of available elastic (AE). available potential (PE} and kinetic (KL} energies
in tertns of the percentage of total energy as a function of nondimensional time ¢t/«. The solid

line gives the case when «/Hs = 0.25 while the dashed line corresponds to a/Hs = 0.5.

Figure 2: The variation of integrand of (2.19) corresponding to the the available elastic {AL). available
potential (PE) and kinetic (KE) energies as a function of nondimensional distance z/a at the
nondimensional times of ct/a = 10 (solid line). 25 (dashed line) and 30 (dot-dashed line}. The

parameter a/Hs = 0.5.

Figure 3: Same as Figure 1 except for an atmosphere with a basic state temperature given by (3.1). The
solid line gives the isothermal case when 7. = 290 K and 3 = 0 while the dashed and long dashed

lines correspond to T. = 250 K. 3 = 0.15 and 7. = 220 K. J = 0.3. respectively.

Figure 4: The nondimensional vertical velocity in an atmosphere where the basic state temperature is given
by (3.1). The solid line gives the isothermal case of 7. = 290 K and 3 = 0 while the dashed line
corresponds to 7. = 220 K and 3 = 0.3. The corresponding a/Hs are 0.5 and 0.66. respectively.
The snapshots are at the nondimensional times ¢t/a of (a) 1.0. (b} 1.5. (¢} 2.0 and (d) 2.5. where

c is the speed of sound corresponding to 290 K.

Figure 5: Same as Figure 1 except for a two-level atmosphere. The solid line corresponds to the case when
the stratospheric temperature is 290 K: the dashed line. 220 K: and the dash-dotted line. 150 k.
In all cases the tropospheric temperature is 290 K. The nondimensional time is now ¢;t/a and

a/Hs = 0.5, where ¢; is the speed of sound in the troposphere.

Figure 6: Same as Figure 4 except for a two-level atmosphere where the tropospheric temperature 15 200 K
and the stratospheric temperature is either 290 K (solid line) or 130 K {dashed line). The snapshots
are at the nondimensional times ¢ t/a of (a) 1.0. (b) 1.5, (¢) 2.0 and (d) 2.5 and a/Hs = 0.5,

where ¢ is the speed of sound in the troposphere. The tropopause lies at /e = 2.327.
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Figure 1: The transient portion of available elastic (AE). available potential {(PE) and kinetic (KE) energies
in terms of the percentage of total energy as a function of nondimensional time ct/a. The solid line gives the

case when a/Hs = 0.25 while the dashed line corresponds to a/H; = 0.5.
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Figure 2: The variation of integrand of (2.19) corresponding to the the available elastic (AE). available
potential (PE) and kinetic (KE) energies as a function of nondimensional distance z/a at the nondimensional

times of ct/a = 10 (solid line). 25 (dashed line) and 50 (dot-dashed line). The parameter a/Hs = 0.5.

21



-10 N NN |

0.1 1.0 10.0 100.0
NONDIMENSIONAL TIME

Figure 3: Same as Figure 1 except for an atmosphere with a basic state temperature given by (3.1). The

solid line gives the isothermal case when 7. = 290 K and 3 = 0 while the dashed and long dashed lines

correspond to T. = 250 K. 3 = 0.153 and T. = 220 K. .J = 0.3. respectively.
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Figure 4: The nondimensional vertical velocity in an atmosphere where the basic state temperature is given
by (3.1). The solid line gives the isothermal case of 7. = 290 K and .3 = 0 while the dashed line corresponds
to 7. = 220 K and 3 = 0.3. The corresponding a/Hs are 0.5 and 0.66. respectively. The snapshots are at the
nondimensional times ¢t /a of (a) 1.0. (b) 1.5, (¢) 2.0 and {d) 2.5. where ¢ is the speed of sound corresponding

to 290 K.
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Figure 5: Same as Figure 1 except for a two-level atmosphere. The solid line corresponds to the case when
the stratospheric temperature is 290 K; the dashed line, 220 K: and the dash-dotted line. 150 K. In all cases
the tropospheric temperature is 290 K. The nondimensional time is now ci#/a and a/Hs = 0.5. where ¢} is

the speed of sound in the troposphere.
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Figure 6: Same as Figure 4 except for a two-level atmosphere where the tropospheric temperature 1s 290 Ix
and the stratospheric temperature is either 290 K (solid line) or 150 K (dashed line). The snapshots are at
the nondimensional times ¢;t/a of (a) 1.0. (b) 1.5. {c) 2.0 and (d) 2.5 and a/Hs = 0.5. where ¢y 13 the speed
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of sound in the troposphere. The tropopause lies at z/a = 2.827.



Popular Summary

The atmosphere is full of waves which differ widely in length and time between peaks. .\ special group.
called acoustic-gravity waves, are generaled whenever large pressure differences occur between adjacent
chunks of air, such as during earthquakes, developing thunderstorms, and even during the launch of the
space shuttle. Although a theory has been constructed of how these waves would propagate out to space
if the atmosphere had the same temperature everywhere. this is not very realistic because temperature
decreases with altitude. In this paper realistic temperatures are taken into account and it s shown how these
variations affect this radiation of energy into space. With the advent of nonhydrostatic models which include

these acoustic-gravity waves, this study will hopefully provide tools to better understand these new models.



